Publications
The publications related to the project are:
A) Journals
- Joel Castaño, Rafael Cabañas, Antonio Salmerón, David Lo, Silverio Martínez-Fernández: How do Machine Learning Models Change? TOSEM CoRR abs/2411.09645 (2025) https://dl.acm.org/doi/10.1145/3767157
- Francisco Durán, Matias Martinez, Patricia Lago, Silverio Martínez-Fernández: Insights into resource utilization of code small language models serving with runtime engines and execution providers, The Journal of Systems & Software. https://arxiv.org/abs/2412.15441
- Matias Martinez, Silverio Martínez-Fernández, Xavier Franch: The Sustainability Face of Automated Program Repair Tools. ACM Transactions on Software Engineering and Methodology, 2025. https://dl.acm.org/doi/10.1145/3744900
- Luís Cruz, Xavier Franch, Silverio Martínez-Fernández: Innovating for Tomorrow: The Convergence of Software Engineering and Green AI. ACM Transactions on Software Engineering and Methodology 34.5, 1-13, 2025. https://dl.acm.org/doi/full/10.1145/3712007
- Alexandra González, Joel Castaño, Xavier Franch, Silverio Martínez-Fernández. Impact of ML optimization tactics on greener pre-trained ML models. Computing, 107(4), 103, 2025. https://link.springer.com/article/10.1007/s00607-025-01437-8
- Álvaro Domingo Reguero, Silverio Martínez-Fernández, Roberto Verdecchia. Energy-efficient neural network training through runtime layer freezing, model quantization, and early stopping. Computer Standards & Interfaces (2024) 103906. https://doi.org/10.1016/j.csi.2024.103906
- Castanyer, R.C., Martínez-Fernández, S. & Franch, X. Which design decisions in AI-enabled mobile applications contribute to greener AI?. Empir Software Eng 29, 2 (2024). https://doi.org/10.1007/s10664-023-10407-7
- Filippo Lanubile, Silverio Martínez-Fernández, Luigi Quaranta: Training future ML engineers: a project-based course on MLOps. IEEE Software, 2024.
- Francisco Durán, Silverio Martínez-Fernández, Michael Felderer and Xavier Franch: Guiding the retraining of convolutional neural networks against adversarial inputs. Accepted in PeerJ Computer Science, 2023. https://peerj.com/articles/cs-1454/
B) Conferences
- Santiago del Rey, Paulo Sérgio Medeiros dos Santos, Guilherme Horta Travassos, Xavier Franch, Silverio Martínez-Fernández: Aggregating empirical evidence from data strategy studies: a case on model quantization. CoRR (2025) https://arxiv.org/abs/2505.00816
- Maria Tubella Salinas, Alexandra González, Silverio Martínez-Fernández: Exploring the Role of Women in Hugging Face Organizations. CIbSE 2025: 75-89 https://doi.org/10.5753/cibse.2025.35293
- Santiago del Rey, Adrià Medina, Xavier Franch, Silverio Martínez-Fernández: Addressing Quality Challenges in Deep Learning: The Role of MLOps and Domain Knowledge. CAIN 2025: 184-189 https://arxiv.org/abs/2501.08402
- Vincenzo De Martino, Joel Castaño, Fabio Palomba, Xavier Franch, Silverio Martínez-Fernández: A Framework for Using LLMs for Repository Mining Studies in Empirical Software Engineering. WSESE@ICSE 2025: 6-11 https://arxiv.org/abs/2411.09974
- Vincenzo De Martino, Silverio Martínez-Fernández, Fabio Palomba: Do Developers Adopt Green Architectural Tactics for ML-Enabled Systems? A Mining Software Repository Study. ICSE-SEIS 2025: 135-139 https://arxiv.org/abs/2410.06708
- Silverio Martínez-Fernández: Environmental Sustainability of Machine Learning Systems: Reducing the Carbon Impact of Their Lifecycle Process. PROFES 2024: 3-7 https://link.springer.com/chapter/10.1007/978-3-031-78386-9_1
- Dagstuhl: Martínez-Fernández, S. 3.10 Working towards a standardized reporting and assessment of the energy efficiency of ML models training and inference. Power, Energy, and Carbon-Aware Computing on Heterogeneous Systems (PEACHES), 45. https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume14/issue08/24351/DagRep.14.8.36/DagRep.14.8.36.pdf#page=10
- Pau Duran, Joel Castaño, Cristina Gómez, Silverio Martínez-Fernández: GAISSALabel: A tool for energy labeling of ML models, FSE Demo, pp. 622-626, 2024, https://doi.org/10.1145/3663529.3663811
- Carles Farré, Xavier Franch: Validity at the Forefront: Investigating Threats in Green AI Research. CAiSE Forum 2024: 55-63. https://doi.org/10.1007/978-3-031-61000-4_7
- Santiago del Rey: Software Design Decisions for Greener Machine Learning-based Systems, DS@CAIN, pp. 256-258, 2024. https://doi.org/10.1145/3644815.3644972
- Francisco Durán, Silverio Martínez-Fernández, Matias Martinez, Patricia Lago: Identifying architectural design decisions for achieving green ML serving, CAIN@ICSE, pp. 18-23, 2024. [pdf]. https://doi.org/10.1145/3644815.3644962
- Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, Justus Bogner: Analyzing the Evolution and Maintenance of ML Models on Hugging Face, MSR, pp. 607-618, 2024. [pdf]. https://ieeexplore.ieee.org/document/10555709
- Joel Castaño, Silverio Martínez-Fernández, Xavier Franch: Lessons Learned from Mining the Hugging Face Repository, WSESE@ICSE 2024 https://arxiv.org/abs/2402.07323
- Matias Martinez, Silverio Martínez-Fernández, Xavier Franch: Energy Consumption of Automated Program Repair, Póster track ICSE 2024, pp. 358-359. [pdf] https://arxiv.org/pdf/2211.12104
- Santiago del Rey, Silverio Martínez-Fernández, Luís Cruz and Xavier Franch. Do DL models and training environments have an impact on energy consumption? SEAA 2023: 150-158 https://ieeexplore.ieee.org/document/10371661
- Silverio Martínez-Fernández, Xavier Franch and Francisco Durán. Towards green AI-based software systems: an architecture-centric approach (GAISSA). SEAA 2023: 432-439 https://ieeexplore.ieee.org/abstract/document/10371616
- H. Ahmed, A. Boshchenko, N. Khan, D. Knyajev, D. Garifollina, G. Scoccia, M. Martinez, I. Malavolta. Evolution of Kotlin Apps in terms of Energy Consumption: An Exploratory Study. (ICT4S 2023). [pdf]
- Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, Justus Bogner: Exploring the Carbon Footprint of Hugging Face's ML Models: A Repository Mining Study. (2023). ESEM 2023: 1-12 [pdf]
- Filippo Lanubile, Silverio Martínez-Fernández, Luigi Quaranta: Teaching MLOps in Higher Education through Project-Based Learning. ICSE SEET (2023) [pdf]
- Santiago del Rey, Silverio Martínez-Fernández and Xavier Franch A review on green deployment for Edge AI. ICT4S 2023
- Xavier Franch, Andreas Jedlitschka, Silverio Martínez-Fernández. A Requirements Engineering Perspective to AI-Based Systems Development: A Vision Paper. In Proceedings of the 29th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2023). LNCS 13975: 223-232, Springer. https://doi.org/10.1007/978-3-031-29786-1_15.
C) In arxiv
-
Omar, R., Bogner, J., Muccini, H., Lago, P., Martínez-Fernández, S., & Franch, X. (2024). The More the Merrier? Navigating Accuracy vs. Energy Efficiency Design Trade-Offs in Ensemble Learning Systems. arXiv preprint arXiv:2407.02914. https://arxiv.org/abs/2407.02914
-
Cruz, L., Gutierrez, X. F., & Martínez-Fernández, S. (2024). Innovating for Tomorrow: The Convergence of SE and Green AI. arXiv preprint arXiv:2406.18142. https://arxiv.org/abs/2406.18142
- Luis Cruz, João Paulo Fernandes, Maja H. Kirkeby, Silverio Martínez-Fernández, June Sallou, Hina Anwar, Enrique Barba Roque, Justus Bogner, Joel Castaño, Fernando Castor, Aadil Chasmawala, Simão Cunha, Daniel Feitosa, Alexandra González, Andreas Jedlitschka, Patricia Lago, Henry Muccini, Ana Oprescu, Pooja Rani, João Saraiva, Federica Sarro, Raghavendra Selvan, Karthik Vaidhyanathan, Roberto Verdecchia, Ivan P. Yamshchikov:
Greening AI-enabled Systems with Software Engineering: A Research Agenda for Environmentally Sustainable AI Practices. CoRR abs/2506.01774 (2025) https://arxiv.org/abs/2506.01774
D) Master and bachelor theses
- Plana Torrents, Pol: "Estimating the Return on Investment of Green Tactics in ML-Enabled Systems". June 2025, GEI
- Durán López, Francisco Javier: "Analyzing sustainability of Code SLMs serving with runtime engines and execution providers". January 2025. MEI
- Medina i Diez, Adrià: "Brute force vs. algorithmic approaches for chess board and pieces recognition". October 2024. MDS
- González Álvarez, Alexandra: "Analyzing how model optimization techniques affect model correctness, inference time and energy consumption of computer vision models". June 2024. GCED, UPC
- Duran Manzano, Pau: "Eina de generació d'etiquetes energètiques per a models d'aprenentatge automàtic". January 2024. GEI, UPC
- Domingo Reguero, Álvaro: "Energy-aware training of neural network architectures: Trade-off between correctness and energy consumption". October 2023. GCED, UPC
- Córdova Pou, Gonzalo: "Computer screenshot classification for boosting ADHD productivity in a VR environment". June 2023. GCED, UPC.
- Lagarde Teixidó, Alec: "Energy efficiency measurement in optimization and inference of ML models". June 2023. GCED, UPC.
- Castaño Fernández, Joel: "A greenability evaluation sheet for AI-based systems". June 2023. GCED, UPC.
- Santiago del Rey: “An analysis of modeling and training decisions for greener computer vision systems“. January 2023. MAI, UPC. Excellent Cum Laude.
- Daniel Escribano Pérez: “Energy consumption of machine learning deployment in cloud providers”. January 2023. GEI, UPC.
- Pablo Gámiz Nieto: “Mesura de l’eficiència energètica de sistemes software i components urbans”. June 2022. GEI, UPC.
- Pol Plana Torrents. "Estimating the Return on Investment of Green Tactics in ML-Enabled Systems". June 2025. GEI, UPC.
- Francisco Javier Durán López. "Analyzing sustainability of Code SLMs serving with runtime engines and execution providers". January 2025. MEI, UPC.
- Adrià Medina I Diez. "Brute force vs. algorithmic approaches for chess board and pieces recognition". October 2024. MDS, UPC.
E) Seminars:
- Xavier Franch: "Green AI: A SE perspective". Jyväskylä University (Finland), March 2025.
- Xavier Franch: "Green AI: Fundamentals and a SE perspective". Örebro University (Sweden), online, January 2025.
- Silverio Martínez-Fernández: "Green AI systems: from measurement to improving energy efficiency", University of Bari, November, 30th, 2023.
- Silverio Martínez-Fernández: "Green AI systems: from measurement to improving energy efficiency", University of L'Aquila, November, 29th, 2023.
- Silverio Martínez-Fernández: "Towards sustainable ML-based software systems", University of Stuttgart, online, July 18th, 2023.
- Silverio Martínez-Fernández: "The GAISSA project Towards green AI-based software systems: an architecture-centric approach", TU Delft, March, 16th, 2023.
- Silverio Martínez-Fernández: “Towards green AI-based software systems: an architecture-driven approach (GAISSA)”, University of Bari, February, 2nd, 2023.
F) Related publications from other related projects (not GAISSA):
- Yinlena Xu, Silverio Martínez-Fernández, Matias Martinez, Xavier Franch. Energy Efficiency of Training Neural Network Architectures: An Empirical Study. In Proceedings of the 56th Hawaii International Conference on System Sciences (HICSS 2023): 781-790. https://hdl.handle.net/10125/102727 [pdf]
- Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, Stefan Wagner. Software Engineering for AI-Based Systems: A Survey. ACM Transactions on Software Engineering Methodology 31(2): 37e:1-37e:59 (2022). [pdf]
- Xavier Franch, Silverio Martínez-Fernández, Claudia P. Ayala, Cristina Gómez. Architectural Decisions in AI-based Systems: An Ontological View. In Procedings of the 15th International Conference on Quality of Information and Communications Technology (QUATIC 2022). CCIS 1621: 18-27, Springer. https://doi.org/10.1007/978-3-031-14179-9_2
- Roger Creus Castanyer, Silverio Martínez-Fernández, Xavier Franch. Integration of Convolutional Neural Networks in Mobile Applications. In Proceedings of the 1st IEEE/ACM Workshop on AI Engineering-Software Engineering for AI (WAIN 2021): 27-34. https://doi.org/10.1109/WAIN52551.2021.00010 [pdf]
Share: